

4-1 MOV Revisited

- In this chapter, the MOV instruction introduces machine language instructions available with various addressing modes and instructions.
- It may be necessary to interpret machine language programs generated by an assembler.
- Occasionally, machine language patches are made by using the **DEBUG** program available with DOS and Visual for Windows.

Machine Language

- Native binary code microprocessor uses as its instructions to control its operation.
 - instructions vary in length from 1 to 13 bytes
- Over 100,000 variations of machine language instructions.
 - there is no complete list of these variations

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pentium Pro Processor, Pentium III, Pentium 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

Figure 4–1 The formats of the 8086–Core2 instructions. (a) The 16-bit form and (b) the 32-bit form.

16-bit instruction mode

Opcode 1-2 bytes | MOD-REG-R/M | Displacement 0-1 bytes | Displacement 0-2 bytes |

(a)

32-bit instruction mode (80386 through Pentium 4 only)

Address size | Register size | Opcode 0-1 bytes | 0-1 bytes | 0-1 bytes |

(b)

(c)

MOD-REG-R/M | Displacement 0-2 bytes |

MOD-REG-R/M | Scaled-index | Displacement 0-4 bytes |

O-4 bytes | 0-4 bytes |

(b)

- 80386 and above assume all instructions are 16bit mode instructions when the machine is operated in the *real mode* (DOS).
- in protected mode (Windows), the upper byte of the descriptor contains the D-bit that selects either the 16- or 32-bit instruction mode

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

The Opcode

- Selects the operation (addition, subtraction, etc.,) performed by the microprocessor.
 - either 1 or 2 bytes long for most instructions
- Figure 4–2 illustrates the general form of the first opcode byte of many instructions.
 - first 6 bits of the first byte are the binary opcode
 - remaining 2 bits indicate the direction (D) of the data flow, and indicate whether the data are a byte or a word (W)

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

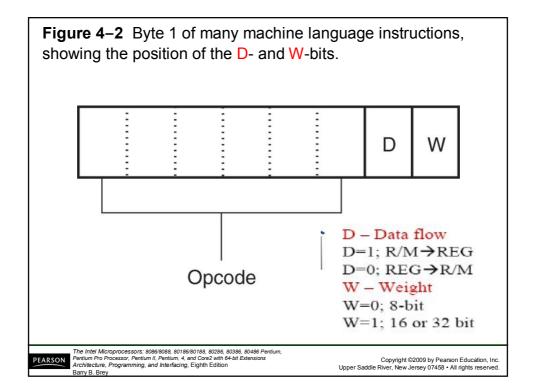


Figure 4–3 Byte 2 of many machine language instructions, showing the position of the MOD, REG, and R/M fields.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pertum Pro Processor, Pentium II, Pentium 4, and Corae with 64-bit Extensions Architecture, Programming, and Interfacion, Elighth Edition

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

MOD Field

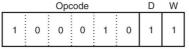
 Specifies addressing mode (MOD) and whether a displacement is present with the selected type.

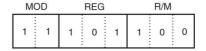
TABLE 4-1 MOD field for the 16-bit instruction mode.

MOD	Function
00	No displacement
01	8-bit sign-extended displacement
10	16-bit signed displacement
11	R/M is a register

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

Register Assignments


TABLE 4-3 REG and R/M (when) MOD = 11assignments.


Code	W = 0 (Byte)	W = 1 (Word)	W = 1 (Doubleword)
000	AL	AX	EAX
001	CL	CX	ECX
010	DL	DX	EDX
011	BL	BX	EBX
100	AH	SP	ESP
101	CH	BP	EBP
110	DH	SI	ESI
111	BH	DI	EDI

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing. Eighth Edition

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

Figure 4-4 The 8BEC instruction placed into bytes 1 and 2 formats from Figures 4-2 and 4-3. This instruction is a MOV BP,SP.

D = Transfer to register (REG)

W = Word

MOD = R/M is a register

REG = BP

R/M = SP

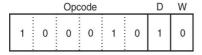
- the opcode is 100010, a MOV instruction

- D and W bits are a logic 1, so a word moves into the destination register specified in the REG field
- REG field contains 101, indicating register BP, so the MOV instruction moves data into register BP

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

R/M Memory Addressing

 Table 4–4 lists the memory-addressing modes for the R/M field when MOD is a 00, 01, or 10 for the 16-bit instruction mode.


TABLE 4-4 16-bit R/M memory-addressing modes.

R/M Code	Addressing Mode
000	DS:[BX+SI]
001	DS:[BX+DI]
010	SS:[BP+SI]
011	SS: BP+DI
100	DS:[SI]
101	DS:[DI]
110	SS:[BP]
111	DS:[BX]

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing. Eighth Edition

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

Figure 4-5 A MOV DL,[DI] instruction converted to its machine language form.

0 1 : 0 0 :

Opcode = MOV D = Transfer to register (REG) W = Byte MOD = No displacement REG = DL

R/M = DS:[DI]

- This instruction is 2 bytes long and has an opcode 100010, D=1 (to REG from R/M), W=0 (byte), MOD=00 (no displacement), REG=010 (DL), and R/M=101 ([DI]).
- If the instruction changes to MOV DL, [DI+1], the MOD field changes to 01 for 8-bit displacement

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

4–3 LOAD EFFECTIVE ADDRESS

- LEA instruction loads any 16-bit register with the offset address
 - determined by the addressing mode selected
- LDS and LES load a 16-bit register with offset address retrieved from a memory location
 - then load either DS or ES with a segment address retrieved from memory

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pertum Pro Processor, Pentium II, Pentium 4, and Corae with 64-bit Extensions Architecture, Programming, and Interfacion, Eligith Edition

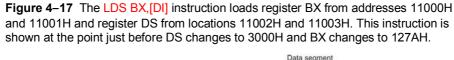
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

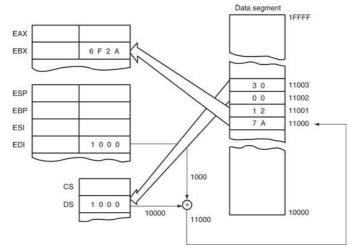
Load-effective address instructions

DIAL

 TABLE 4-10
 Load-effective address instructions.

Assembly Language	Operation
LEA AX,NUMB LEA EAX,NUMB LDS DI,LIST LDS EDI,LIST1 LES BX,CAT	Loads AX with the offset address of NUMB Loads EAX with the offset address of NUMB Loads DS and DI with the 32-bit contents of data segment memory location LIST Loads the DS and EDI with the 48-bit contents of data segment memory location LIST1 Loads ES and BX with the 32-bit contents of data segment memory location CAT
LSS SP,MEM	Loads SS and SP with the 32-bit contents of data segment memory location MEM


The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition


LDS, LES, and LSS

- Load any 16- or 32-bit register with an offset address, and the DS, ES, or SS segment register with a segment address.
- Figure 4–17 illustrates an example LDS BX,[DI] instruction.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Elighth Edition

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B, Brey

4-4 STRING DATA TRANSFERS

- Five string data transfer instructions: LODS, STOS, MOVS, INS, and OUTS.
- Each allows data transfers as a single byte, word, or double word.
- Before the string instructions are presented, the operation of the D flag-bit (direction), DI, and SI must be understood as they apply to the string instructions.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentiun PEARSON Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extens Architecture, Programming, and Interfacing, Eighth Edition

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

The Direction Flag

- The direction flag (D, located in the flag register) selects the auto-increment or the auto-decrement operation for the DI and SI registers during string operations.
 - used only with the string instructions
- The CLD instruction clears the D flag and the STD instruction sets it.
 - CLD instruction selects the auto-increment mode and STD selects the auto-decrement mode

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

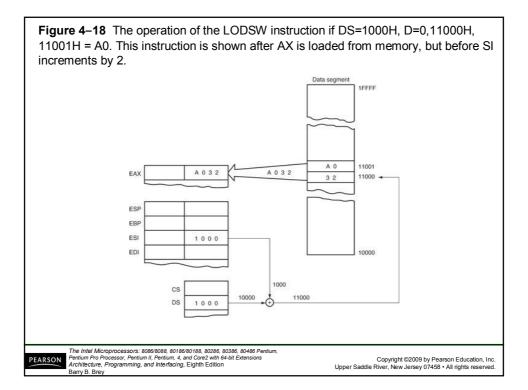
DI and SI

- During execution of string instruction, memory accesses occur through DI and SI registers.
 - DI offset address accesses data in the extra segment for all string instructions that use it
 - SI offset address accesses data by default in the data segment
- Operating in 32-bit mode EDI and ESI registers are used in place of DI and SI.
 - this allows string using any memory location in the entire 4G-byte protected mode address space

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

LODS


· Loads AL, AX, or EAX with data at segment offset address indexed by the SI register.

Assembly Language	Operation
LODSB	AL = DS:[SI]; SI = SI ± 1
LODSW	$AX = DS:[SI]; SI = SI \pm 2$
LODSD	EAX = DS:[SI]; SI = SI \pm 4

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

١.

STOS

- Stores AL, AX, or EAX at the extra segment memory location addressed by the DI register.
- STOSB (stores a byte) stores the byte in AL at the extra segment memory location addressed by DI.(DI=DI±1)
- STOSW (stores a word) stores AX in the memory location addressed by DI.(DI=DI±2)
- After the byte (AL), word (AX), or doubleword (EAX) is stored, contents of DI increment or decrement.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

MOVS

- Transfers a byte, word, or doubleword from data segment addressed by SI to extra segment location addressed by DI.
 - pointers are incremented or decremented, as dictated by the direction flag
- Only the source operand (SI), located in the data segment may be overridden so another segment may be used.
- The destination operand (DI) must always be located in the extra segment.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium
Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions
Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Rirey.

Copyright ©2009 by Pearson Education, Inc Upper Saddle River, New Jersey 07458 • All rights reserved

- The only memory-to-memory transfer allowed.
- MOVSB transfers byte from data segment to extra segment.
- MOVSW transfers word from data segment to extra segment.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

or, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions
Copyright ©2009 by Pearson Education, Inc umming, and Interfacing, Eighth Edition
Upper Saddle River, New Jersey 07458 • All rights reserved

Assembly Language	Operation
MOVSB	ES:[DI] = DS:[SI]; DI = DI \pm 1; SI = SI \pm 1 (byte transferred)
MOVSW	ES:[DI] = DS:[SI]; DI = DI \pm 2; SI = SI \pm 2 (word transferred)
MOVSD	ES:[DI] = DS:[SI]; DI = DI \pm 4; SI = SI \pm 4 (doubleword transferred)

INS

- Transfers a byte, word, or doubleword of data from an I/O device into the extra segment memory location addressed by the DI register.
 - I/O address is contained in the DX register
- Useful for inputting a block of data from an external I/O device directly into the memory.
- One application transfers data from a disk drive to memory.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

- · Three basic forms of the INS.
- INSB inputs data from an 8-bit I/O device and stores it in a memory location indexed by SI.
- INSW instruction inputs 16-bit I/O data and stores it in a word-sized memory location.
- INSD instruction inputs a doubleword.

In a Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Fentium,
ARSON Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Rev

Assembly Language	Operation
INSB	ES:[DI] = [DX]; DI = DI \pm 1 (byte transferred)
INSW	ES:[DI] = [DX]; DI = DI \pm 2 (word transferred)
INSD	ES:[DI] = [DX]; DI = DI \pm 4 (doubleword transferred)

OUTS

- Transfers a byte, word, or doubleword of data from the data segment memory location address by SI to an I/O device.
 - I/O device addressed by the DX register as with the INS instruction
- OUTSB
- OUTSW
- OUTSD
- INS and OUTS instructions not available on 8086/8088microprocessors.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition

Assembly Language	Operation
OUTSB	[DX] = DS:[SI]; SI = SI ± 1 (byte transferred)
OUTSW	$[DX] = DS:[SI]; SI = SI \pm 2 $ (word transferred)
OUTSD	[DX] = DS:[SI]; SI = SI \pm 4 (doubleword transferred